Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889998

RESUMO

Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Azóis/farmacologia , Azóis/metabolismo , Fluconazol/farmacologia , Fluconazol/metabolismo , Caspofungina , Filogenia , Candida albicans/genética , Candida albicans/metabolismo , Fosfatidilinositol 3-Quinases/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferases/química
2.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849885

RESUMO

Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.


Assuntos
Candida albicans/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Histona Acetiltransferases/genética , Antifúngicos/toxicidade , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Caspofungina/toxicidade , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/metabolismo , Virulência/genética
3.
J Fungi (Basel) ; 5(1)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795580

RESUMO

Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...